Predicting discharge placement after elective surgery for lumbar spinal stenosis using machine learning methods

Predicting discharge placement after elective surgery for lumbar spinal stenosis using machine learning methods

Paul T. Ogink, Aditya V. Karhade, Quirina C. B. S. Thio, William B. Gormley, Fetullah C. Oner, Jorrit J. Verlaan, Joseph H. Schwab

April 2019, pp 1 - 8
DOI
10.1007/s00586-019-05928-z
First Online: 02 April 2019
Abstract

Purpose

An excessive amount of total hospitalization is caused by delays due to patients waiting to be placed in a rehabilitation facility or skilled nursing facility (RF/SNF). An accurate preoperative prediction of who would need a RF/SNF place after surgery could reduce costs and allow more efficient organizational planning. We aimed to develop a machine learning algorithm that predicts non-home discharge after elective surgery for lumbar spinal stenosis.

Methods

We used the American College of Surgeons National Surgical Quality Improvement Program to select patient that underwent elective surgery for lumbar spinal stenosis between 2009 and 2016. The primary outcome measure for the algorithm was non-home discharge. Four machine learning algorithms were developed to predict non-home discharge. Performance of the algorithms was measured with discrimination, calibration, and an overall performance score.

Results

We included 28,600 patients with a median age of 67 (interquartile range 58–74). The non-home discharge rate was 18.2%. Our final model consisted of the following variables: age, sex, body mass index, diabetes, functional status, ASA class, level, fusion, preoperative hematocrit, and preoperative serum creatinine. The neural network was the best model based on discrimination (c-statistic = 0.751), calibration (slope = 0.933; intercept = 0.037), and overall performance (Brier score = 0.131).

Conclusions

A machine learning algorithm is able to predict discharge placement after surgery for lumbar spinal stenosis with both good discrimination and calibration. Implementing this type of algorithm in clinical practice could avert risks associated with delayed discharge and lower costs.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.[Figure not available: see fulltext.]