L. Beaudoin, K. F. Zabjek, M. A. Leroux, C. Coillard, C. H. Rivard


February 1999, Volume 8, Issue 1, pp 40 - 45 Original article Read Full Article 10.1007/s005860050125

First Online: 17 February 1999

A small leg length inequality, either true or functional, can be implicated in the pathogenesis of numerous spinal disorders. The correction of a leg length inequality with the goal of treating a spinal pathology is often achieved with the use of a shoe lift. Little research has focused on the impact of this correction on the three-dimensional (3D) postural organisation. The goal of this study is to quantify in control subjects the 3D postural changes to the pelvis, trunk, scapular belt and head, induced by a shoe lift. The postural geometry of 20 female subjects (x – = 22, σ = 1.2) was evaluated using a motion analysis system for three randomised conditions: control, and right and left shoe lift. Acute postural adaptations were noted for all subjects, principally manifested through the tilt of the pelvis, asymmetric version of the left and right iliac bones, and a lateral shift of the pelvis and scapular belt. The difference in the version of the right and left iliac bones was positively associated with the pelvic tilt. Postural adaptations were noted to vary between subjects for rotation and postero-anterior shift of the pelvis and scapular belt. No notable differences between conditions were noted in the estimation of kyphosis and lordosis. The observed systematic and variable postural adaptations noted in the presence of a shoe lift reflects the unique constraints of the musculoskeletal system. This suggests that the global impact of a shoe lift on a patient’s posture should also be considered during treatment. This study provides a basis for comparison of future research involving pathological populations.


Read Full Article