Paolo Costa, Alessandro Borio, Sonia Marmolino, Cristina Turco, Domenico Serpella, Elena della Cerra, Elia Cipriano, Salvatore Ferlisi

October 2023, Volume 32, Issue 10, pp 3360- 3369 Original Article Read Full Article 10.1007/s00586-023-07811-4

First Online: 19 June 2023


Intraoperative muscle motor evoked potentials (m-MEPs) are widely used in spinal surgery with the aim of identifying a damage to spinal cord at a reversible stage. Generally, lower limb m-MEPs are recorded from abductor hallucis [AH] and the tibialis anterior [TA]. The purpose of this work is to study an unselected population by recording the m-MEPs from TA, AH and extensor digitorum brevis (EDB), with the aim of identifying the most adjustable and stable muscles responses intraoperatively.


Transcranially electrically induced m-MEPs were intraoperative recorded in a total of 107 surgical procedures. m-MEPs were recorded by a needle electrode placed in the muscle from TA, AH and EDB muscles in the lower extremities.


Overall monitorability (i.e., at least 1 Lower Limb m-MEP recordable) was 100/107 (93.5%). In the remaining 100 surgeries in 3 cases, the only muscle that could be recorded at baseline was one AH, and in other 2 the EDB. Persistence (i.e., the recordability of m-MEP from baseline to the end of surgery) was 88.7% for TA, 89.8% for AH and 93.8% for EDB.


In our series, EDB m-MEPs have demonstrated a recordability superior to TA and a stability similar to AH. The explanations may be different and range from changes in the excitability of the cortical motor neuron to the different sensitivity to ischemia of the spinal motor neuron. EDB can be used alternatively or can be added to TA and AH as a target muscle of the lower limb in spinal surgery.

Read Full Article