Naomi Winn, Simranjeet Kaur, Victor Cassar-Pullicino, Matthew Ockendon


May 2022, pp 1 - 15 Original Article Read Full Article 10.1007/s00586-022-07233-8

First Online: 19 May 2022

A novel use of cone beam CT: flexion and extension weight-bearing imaging to assess spinal stability

Purpose

To assess spinal stability in different physiological positions whilst weight-bearing.

Methods

A cone beam CT scanner (CBCT) was used to identify any abnormal motion in the spine in different physiological positions whilst weight-bearing. The lumbar spine was assessed in 6 different patients with a comfortable neutral standing position and standing flexion and extension images in selected patients. Seated, weight-bearing flexion and extension images of the cervical spine were obtained in a further patient. Clinical indications included stability assessment post-trauma, post-surgical fusion and back pain. The projection images were reconstructed using bone and soft tissue algorithms to give isotropic CT images which could be viewed as per conventional multi-detector CT images. The flexion and extension CBCT data were fused to give a representation of any spinal movement between the extremes of motion.

Results

The flexion and extension weight-bearing images gave anatomical detail of the spine. Detail of the surgical constructs was possible. Dynamic structural information about spinal alignment, facet joints, exit foramina and paraspinal musculature was possible. The effective dose from the neutral position was equal to that of supine, multi-detector CT.

Conclusion

CBCT can be used to image the lumbar and cervical spine in physiological weight-bearing positions and at different extremes of spinal motion. This novel application of an existing technology can be used to aid surgical decision making to assess spinal stability and to investigate occult back and leg pain. Its use should be limited to specific clinical indications, given the relatively high radiation dose.


Read Full Article