Alexander Breen, Fiona Mellor, Alan Breen


November 2018, Volume 27, Issue 11, pp 2831 - 2839 Original Article Read Full Article 10.1007/s00586-018-5666-1

First Online: 20 June 2018

Purpose

Intervertebral kinematic assessments have been used to investigate mechanical causes when back pain is resistant to treatment, and recent studies have identified intervertebral motion markers that discriminate patients from controls. However, such patients are a heterogeneous group, some of whom have structural disruption, but the effects of this on intervertebral kinematics are unknown.

Methods

Thirty-seven patients with treatment-resistant back pain referred for quantitative fluoroscopy were matched to an equal number of pain-free controls for age and sex. All received passive recumbent flexion assessments for intervertebral motion sharing inequality (MSI), variability (MSV), laxity and translation. Comparisons were made between patient subgroups, between patients and controls and against normative levels from a separate group of controls.

Results

Eleven patients had had surgical or interventional procedures, and ten had spondylolisthesis or pars defects. Sixteen had no disruption. Patients had significantly higher median MSI values (0.30) than controls (0.27, p = 0.010), but not MSV (patients 0.08 vs controls 0.08, p = 0.791). Patients who received invasive procedures had higher median MSI values (0.37) than those with bony defects (0.30, p = 0.018) or no disruption (0.28, p = 0.0007). Laxity and translation above reference limits were not more prevalent in patients.

Conclusion

Patients with treatment-resistant nonspecific back pain have greater MSI values than controls, especially if the former have received spinal surgery. However, excessive laxity, translation and MSV are not more prevalent in these patients. Thus, MSI should be investigated as a pain mechanism and for its possible value as a prognostic factor and/or target for treatment in larger patient populations.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.[Figure not available: see fulltext.]


Read Full Article