Rahul Kaul, Harvinder Singh Chhabra, Alexander R. Vaccaro, Rainer Abel, Sagun Tuli, Ajoy Prasad Shetty, Kali Dutta Das, Bibhudendu Mohapatra, Ankur Nanda, Gururaj M. Sangondimath, Murari Lal Bansal, Nishit Patel

April 2017, Volume 26, Issue 5, pp 1470 - 1476 Original Article Read Full Article 10.1007/s00586-016-4663-5

First Online: 22 June 2016


The aim of this multicentre study was to determine whether the recently introduced AOSpine Classification and Injury Severity System has better interrater and intrarater reliability than the already existing Thoracolumbar Injury Classification and Severity Score (TLICS) for thoracolumbar spine injuries.


Clinical and radiological data of 50 consecutive patients admitted at a single centre with a diagnosis of an acute traumatic thoracolumbar spine injury were distributed to eleven attending spine surgeons from six different institutions in the form of PowerPoint presentation, who classified them according to both classifications. After time span of 6 weeks, cases were randomly rearranged and sent again to same surgeons for re-classification. Interobserver and intraobserver reliability for each component of TLICS and new AOSpine classification were evaluated using Fleiss Kappa coefficient (k value) and Spearman rank order correlation.


Moderate interrater and intrarater reliability was seen for grading fracture type and integrity of posterior ligamentous complex (Fracture type: k = 0.43 ± 0.01 and 0.59 ± 0.16, respectively, PLC: k = 0.47 ± 0.01 and 0.55 ± 0.15, respectively), and fair to moderate reliability (k = 0.29 ± 0.01 interobserver and 0.44+/0.10 intraobserver, respectively) for total score according to TLICS. Moderate interrater (k = 0.59 ± 0.01) and substantial intrarater reliability (k = 0.68 ± 0.13) was seen for grading fracture type regardless of subtype according to AOSpine classification. Near perfect interrater and intrarater agreement was seen concerning neurological status for both the classification systems.


Recently proposed AOSpine classification has better reliability for identifying fracture morphology than the existing TLICS. Additional studies are clearly necessary concerning the application of these classification systems across multiple physicians at different level of training and trauma centers to evaluate not only their reliability and reproducibility, but also the other attributes, especially the clinical significance of a good classification system.

Read Full Article