Lucas A. Smolders, Idsart Kingma, Niklas Bergknut, Albert J. van der Veen, Wouter J. A. Dhert, Herman A. W. Hazewinkel, Jaap H. van Dieën, Björn P. Meij


September 2012, Volume 21, Issue 9, pp 1692 - 1699 Original Article Read Full Article 10.1007/s00586-012-2285-0

First Online: 11 April 2012

Purpose

Dogs are often used as an animal model in spinal research, but consideration should be given to the breed used as chondrodystrophic (CD) dog breeds always develop IVD degeneration at an early age, whereas non-chondrodystrophic (NCD) dog breeds may develop IVD degeneration, but only later in life. The aim of this study was to provide a mechanical characterization of the NCD [non-degenerated intervertebral discs (IVDs), rich in notochordal cells] and CD (degenerated IVDs, rich in chondrocyte-like cells) canine spine before and after decompressive surgery (nucleotomy).

Methods

The biomechanical properties of multisegmented lumbar spine specimens (T13–L5 and L5–Cd1) from 2-year-old NCD dogs (healthy) and CD dogs (early degeneration) were investigated in flexion/extension (FE), lateral bending (LB), and axial rotation (AR), in the native state and after nucleotomy of L2–L3 or dorsal laminectomy and nucleotomy of L7–S1. The range of motion (ROM), neutral zone (NZ), and NZ stiffness (NZS) of L1–L2, L2–L3, L6–L7, and L7–S1 were calculated.

Results

In native spines in both dog groups, the greatest mobility in FE was found at L7–S1, and the greatest mobility in LB at L2–L3. Surgery significantly increased the ROM and NZ, and significantly decreased the NZS in FE, LB, and AR in both breed groups. However, surgery at L2–L3 resulted in a significantly larger increase in NZ and decrease in NZS in the CD spines compared with the NCD spines, whereas surgery at L7–S1 induced a significantly larger increase in ROM and decrease in NZS in the NCD spines compared with the CD spines.

Conclusions

Spinal biomechanics significantly differ between NCD and CD dogs and researchers should consider this aspect when using the dog as a model for spinal research.


Read Full Article