Souad Rhalmi, Sylvie Charette, Michel Assad, Christine Coillard, Charles H. Rivard

July 2007, Volume 16, Issue 7, pp 1063 - 1072 Original Article Read Full Article 10.1007/s00586-007-0329-7

First Online: 03 March 2007

This investigation was undertaken to simulate in an animal model the particles released from a porous nitinol interbody fusion device and to evaluate its consequences on the dura mater, spinal cord and nerve roots, lymph nodes (abdominal para-aortic), and organs (kidneys, spleen, pancreas, liver, and lungs). Our objective was to evaluate the compatibility of the nitinol particles with the dura mater in comparison with titanium alloy. In spite of the great use of metallic devices in spine surgery, the proximity of the spinal cord to the devices raised concerns about the effect of the metal debris that might be released onto the neural tissue. Forty-five New Zealand white female rabbits were divided into three groups: nitinol (treated: N = 4 per implantation period), titanium (treated: N = 4 per implantation period), and sham rabbits (control: N = 1 per observation period). The nitinol and titanium alloy particles were implanted in the spinal canal on the dura mater at the lumbar level L2–L3. The rabbits were sacrificed at 1, 4, 12, 26, and 52 weeks. Histologic sections from the regional lymph nodes, organs, from remote and implantation sites, were analyzed for any abnormalities and inflammation. Regardless of the implantation time, both nitinol and titanium particles remained at the implantation site and clung to the spinal cord lining soft tissue of the dura mater. The inflammation was limited to the epidural space around the particles and then reduced from acute to mild chronic during the follow-up. The dura mater, sub-dural space, nerve roots, and the spinal cord were free of reaction. No particles or abnormalities were found either in the lymph nodes or in the organs. In contact with the dura, the nitinol elicits an inflammatory response similar to that of titanium. The tolerance of nitinol by a sensitive tissue such as the dura mater during the span of 1 year of implantation demonstrated the safety of nitinol and its potential use as an intervertebral fusion device.

Read Full Article